Metabolic control of adaptive β-cell proliferation by the protein deacetylase SIRT2.

Matthew Wortham, Bastian Ramms,Chun Zeng,Jacqueline R Benthuysen,Somesh Sai, Dennis P Pollow, Fenfen Liu,Michael Schlichting, Austin R Harrington, Bradley Liu,Thazha P Prakash, Elaine C Pirie,Han Zhu, Siyouneh Baghdasarian,Johan Auwerx, Orian S Shirihai,Maike Sander

bioRxiv : the preprint server for biology(2024)

引用 0|浏览5
暂无评分
摘要
Selective and controlled expansion of endogenous β-cells has been pursued as a potential therapy for diabetes. Ideally, such therapies would preserve feedback control of β-cell proliferation to avoid excessive β-cell expansion and an increased risk of hypoglycemia. Here, we identified a regulator of β-cell proliferation whose inactivation results in controlled β-cell expansion: the protein deacetylase Sirtuin 2 (SIRT2). Sirt2 deletion in β-cells of mice increased β-cell proliferation during hyperglycemia with little effect in homeostatic conditions, indicating preservation of feedback control of β-cell mass. SIRT2 restrains proliferation of human islet β-cells cultured in glucose concentrations above the glycemic set point, demonstrating conserved SIRT2 function. Analysis of acetylated proteins in islets treated with a SIRT2 inhibitor revealed that SIRT2 deacetylates enzymes involved in oxidative phosphorylation, dampening the adaptive increase in oxygen consumption during hyperglycemia. At the transcriptomic level, Sirt2 inactivation has context-dependent effects on β-cells, with Sirt2 controlling how β-cells interpret hyperglycemia as a stress. Finally, we provide proof-of-principle that systemic administration of a GLP1-coupled Sirt2-targeting antisense oligonucleotide achieves β-cell selective Sirt2 inactivation and stimulates β-cell proliferation under hyperglycemic conditions. Overall, these studies identify a therapeutic strategy for increasing β-cell mass in diabetes without circumventing feedback control of β-cell proliferation.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要