Plant-pollinator network architecture does not impact intraspecific microbiome variability

Gordon P. Smith,Hamutahl Cohen, Jocelyn F. Zorn, Quinn S. McFrederick,Lauren C. Ponisio

MOLECULAR ECOLOGY(2024)

引用 0|浏览0
暂无评分
摘要
Variation in how individuals interact with food resources can directly impact, and be affected by, their microbial interactions due to the potential for transmission. The degree to which this transmission occurs, however, may depend on the structure of forager networks, which determine the community-scale transmission opportunities. In particular, how the community-scale opportunity for transfer balances individual-scale barriers to transmission is unclear. Examining the bee-flower and bee-microbial interactions of over 1000 individual bees, we tested (1) the degree to which individual floral visits predicted microbiome composition and (2) whether plant-bee networks with increased opportunity for microbial transmission homogenized the microbiomes of bees within that network. The pollen community composition carried by bees was associated with microbiome composition at some sites, suggesting that microbial transmission at flowers occurred. Contrary to our predictions, however, microbiome variability did not differ based on transfer opportunity: bee microbiomes in asymmetric networks with high opportunity for microbial transfer were similarly variable compared to microbiomes in networks with more evenly distributed links. These findings suggest that microbial transmission at flowers is frequent enough to be observed at the community level, but that community network structure did not substantially change the dynamics of this transmission, perhaps due to filtering processes in host guts.
更多
查看译文
关键词
intraspecific variation,microbial transmission,microbiomes,plant-pollinator network
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要