Conductance Evolution of Photoisomeric Single-Molecule Junctions under Ultraviolet Irradiation and Mechanical Stretching

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY(2024)

引用 0|浏览1
暂无评分
摘要
A comprehensive understanding of carrier transport in photoisomeric molecular junctions is crucial for the rational design and delicate fabrication of single-molecule functional devices. It has been widely recognized that the conductance of azobenzene (a class of photoisomeric molecules) based molecular junctions is mainly determined by photoinduced conformational changes. In this study, it is demonstrated that the most probable conductance of amine-anchored azobenzene-based molecular junctions increases continuously upon UV irradiation. In contrast, the conductance of pyridyl-anchored molecular junctions with an identical azobenzene core exhibits a contrasting trend, highlighting the pivotal role that anchoring groups play, potentially overriding (even reversing) the effects of photoinduced conformational changes. It is further demonstrated that the molecule with cis-conformation cannot be fully mechanically stretched into the trans-conformation, clarifying that it is a great challenge to realize a reversible molecular switch by purely mechanical operation. Additionally, it is revealed that the coupling strength of pyridyl-anchored molecules is dramatically weakened when the UV irradiation time is prolonged, whereas it is not observed for amine-anchored molecules. The mechanisms for these observations are elucidated with the assistance of density functional theory calculations and UV-Vis spectra combined with flicker noise measurements which confirm the photoinduced conformational changes, providing insight into understanding the charge transport in photoisomeric molecular junctions and offering a routine for logical designing synchro opto-mechanical molecular switches.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要