Data-driven characterization of traumatic brain injury severity from clinical, neuroimaging, and blood-based indicators.

Research square(2024)

引用 0|浏览0
暂无评分
摘要
The conventional clinical approach to characterizing traumatic brain injuries (TBIs) as mild, moderate, or severe using the Glasgow Coma Scale (GCS) total score has well-known limitations, prompting calls for more sophisticated strategies to characterize TBI. Here, we use item response theory (IRT) to develop a novel method for quantifying TBI severity that incorporates neuroimaging and blood-based biomarkers along with clinical measures. Within the multicenter Transforming Research and Clinical Knowledge in TBI (TRACK-TBI) study sample (N = 2545), we show that a set of 23 clinical, head computed tomography (CT), and blood-based biomarker variables familiar to clinicians and researchers index a common latent continuum of TBI severity. We illustrate how IRT can be used to identify the relative value of these features to estimate an individual's position along the TBI severity continuum. Finally, we show that TBI severity scores generated using this novel IRT-based method incrementally predict functional outcome over classic clinical (mild, moderate, severe) or International Mission for Prognosis and Analysis of Clinical Trials in TBI (IMPACT) classification methods. Our findings directly inform ongoing international efforts to refine and deploy new pragmatic, empirically-supported strategies for characterizing TBI, while illustrating a strategy that may be useful to evolve staging systems for other diseases.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要