Applications of Mass Spectrometry in the Characterization, Screening, Diagnosis, and Prognosis of COVID-19.

Camila Akemi Oliveira Yamada,Bruno de Paula Oliveira Santos,Rafael Pereira Lemos, Ana Carolina Silva Batista, Izabela Mamede C A da Conceição,Adriano de Paula Sabino, Luís Maurício Trambaioli da Rocha E Lima,Mariana T Q de Magalhães

Advances in experimental medicine and biology(2024)

引用 0|浏览0
暂无评分
摘要
Mass spectrometry (MS) is a powerful analytical technique that plays a central role in modern protein analysis and the study of proteostasis. In the field of advanced molecular technologies, MS-based proteomics has become a cornerstone that is making a significant impact in the post-genomic era and as precision medicine moves from the research laboratory to clinical practice. The global dissemination of COVID-19 has spurred collective efforts to develop effective diagnostics, vaccines, and therapeutic interventions. This chapter highlights how MS seamlessly integrates with established methods such as RT-PCR and ELISA to improve viral identification and disease progression assessment. In particular, matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF-MS) takes the center stage, unraveling intricate details of SARS-CoV-2 proteins, revealing modifications such as glycosylation, and providing insights critical to formulating therapies and assessing prognosis. However, high-throughput analysis of MALDI data presents challenges in manual interpretation, which has driven the development of programmatic pipelines and specialized packages such as MALDIquant. As we move forward, it becomes clear that integrating proteomic data with various omic findings is an effective strategy to gain a comprehensive understanding of the intricate biology of COVID-19 and ultimately develop targeted therapeutic paradigms.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要