Evolutionary dynamics of the novel ST22-PT methicillin-resistant Staphylococcus aureus clone co-harbouring Panton-Valentine leucocidin and duplicated toxic shock syndrome toxin 1 genes.

Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases(2024)

引用 0|浏览4
暂无评分
摘要
OBJECTIVES:Globally, the isolation of community-associated methicillin-resistant Staphylococcus aureus (MRSA) harbouring both the Panton-Valentine leucocidin (PVL) and toxic shock syndrome toxin 1 (TSST-1) genes is rare. However, we encountered an outbreak of the ST22-PT clone exhibiting this phenotype in Japan. Notably, the TSST-1 gene was duplicated in most of the strains. This study aimed to elucidate the mechanisms underlying this gene duplication. METHODS:A total of 90 MRSA isolates were collected from the skin of outpatients in Fukuoka City, Japan, between 2017 and 2019. Whole-genome sequencing was performed on MRSA strains that were PVL and TSST-1 positive. RESULTS:A total of 43 (47.8%) strains produced TSST-1, 20 (22.2%) produced PVL, and 16 (17.8%) produced both. Fifteen isolates were classified as ST22/SCCmec type IVa (ST22-PT clone) and one as ST1/SCCmec type V (ST1-PT clone). Three distinct ST22-PT clones were identified: Fukuoka clone I (one PVL gene and one TSST-1 gene), Fukuoka clone II (addition of a TSST-1 gene to Fukuoka clone I), and Fukuoka clone III (marked by a chromosomal inversion in a large region from Fukuoka clone II). DISCUSSION:Fukuoka clone I may have integrated a novel pathogenicity island bearing the TSST-1 gene, leading to the emergence of Fukuoka clone II with a duplicated TSST-1 gene. This duplication subsequently instigated a chromosomal inversion in a large region owing to the homologous sequence surrounding TSST-1, giving rise to Fukuoka clone III. These findings provide crucial insights into the genetic evolution of MRSA.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要