Innovative Anodic Treatment to Obtain Stable Metallic Silver Micropatches on TiO2 Nanotubes: Structural, Electrochemical, and Photochemical Properties

Valentina C. Cajiao Checchin, Rodolfo D. Cacciari,Aldo A. Rubert, Marcela Lieblich,Paula Caregnato,Natalia S. Fagali, Monica Fernandez Lorenzo de Mele

ACS OMEGA(2024)

引用 0|浏览2
暂无评分
摘要
Electrochemical modification of the Ti surface to obtain TiO2 nanotubes (NT-Ti) has been proposed to enhance osseointegration in medical applications. However, susceptibility to microbial adhesion, linked to biomaterial-associated infections, and the high TiO2 band gap energy, which allows light absorption almost exclusively in the ultraviolet (UV) region, limit its applications. Modifying the TiO2 semiconductor with metals such as Ag has been suggested both for antimicrobial purposes and for absorbing light in the visible region. The formation of NT-Ti with Ag micropatches (Ag-NT-Ti) is pursued with the objective of enhancing the stability of the deposits and preventing cytotoxic levels of Ag cellular uptake. The innovative process proposed here involves immersing NT-Ti in a AgNO3 solution as the initial step. Diverging from previously reported electrochemical methods, this process incorporates anodization within the TiO2 oxide formation region instead of cathodic reduction generally employed by other researchers. The final step encompasses an annealing treatment. The treatments result in the in situ Ag1+ reduction and formation of stable and active micropatches of metallic Ag on the NT-Ti surface. Scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), Raman, diffuse reflectance spectroscopy (DRS), wettability assessment, and electrochemical characterizations were conducted to evaluate the modified surfaces. The well-known properties of NT-Ti surfaces were enhanced, leading to improved photocatalytic activity across both visible and UV regions, significant stability against detachment, and controlled release of Ag1+ for promising antimicrobial effects. [GRAPHICS]
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要