Microscopic optical potential from the relativistic Brueckner-Hartree-Fock theory I. proton-nucleus scattering

arxiv(2024)

引用 0|浏览10
暂无评分
摘要
A relativistic microscopic optical model potential for nucleon-nucleus scattering is developed based on the ab initio relativistic Brueckner-Hartree-Fock (RBHF) theory with the improved local density approximation, which is abbreviated as the RBOM potential. Both real and imaginary parts of the single-particle potentials in symmetric and asymmetric nuclear matter at various densities are determined uniquely in the full Dirac space. The density distributions of the target nuclei are calculated by the covariant energy density functional theory with the density functional PC-PK1. The central and spin-orbit terms of the optical potentials are quantitatively consistent with the relativistic phenomenological optical potentials. The performance of the RBOM potential is evaluated by considering proton scattering with incident energy E≤ 200 MeV on five target nuclei, 208Pb, 120Sn, 90Zr, 48Ca, and 40Ca. Scattering observables including the elastic scattering angular distributions, analyzing powers, spin rotation functions, and reaction cross sections are analyzed. Theoretical predictions show good agreements with the experimental data and the results derived from phenomenological optical potentials. We anticipate that the RBOM potential can provide reference for other phenomenological and microscopic optical model potentials, as well as reliable descriptions for nucleon scattering on exotic nuclei in the era of rare-isotope beams.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要