Progressive-Proximity Bit-Flipping for Decoding Surface Codes

Michele Pacenti,Mark F. Flanagan, Dimitris Chytas,Bane Vasic

CoRR(2024)

引用 0|浏览2
暂无评分
摘要
Topological quantum codes, such as toric and surface codes, are excellent candidates for hardware implementation due to their robustness against errors and their local interactions between qubits. However, decoding these codes efficiently remains a challenge: existing decoders often fall short of meeting requirements such as having low computational complexity (ideally linear in the code's blocklength), low decoding latency, and low power consumption. In this paper we propose a novel bit-flipping (BF) decoder tailored for toric and surface codes. We introduce the proximity vector as a heuristic metric for flipping bits, and we develop a new subroutine for correcting a particular class of harmful degenerate errors. Our algorithm achieves linear complexity growth and it can be efficiently implemented as it only involves simple operations such as bit-wise additions, quasi-cyclic permutations and vector-matrix multiplications. The proposed decoder shows a decoding threshold of 7.5 binary symmetric channel.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要