Mitigating Fine-tuning Jailbreak Attack with Backdoor Enhanced Alignment

Jiongxiao Wang,Jiazhao Li, Yiquan Li,Xiangyu Qi, Junjie Hu, Yixuan Li, Patrick McDaniel,Muhao Chen,Bo Li,Chaowei Xiao

CoRR(2024)

引用 0|浏览22
暂无评分
摘要
Despite the general capabilities of Large Language Models (LLMs) like GPT-4 and Llama-2, these models still request fine-tuning or adaptation with customized data when it comes to meeting the specific business demands and intricacies of tailored use cases. However, this process inevitably introduces new safety threats, particularly against the Fine-tuning based Jailbreak Attack (FJAttack), where incorporating just a few harmful examples into the fine-tuning dataset can significantly compromise the model safety. Though potential defenses have been proposed by incorporating safety examples into the fine-tuning dataset to reduce the safety issues, such approaches require incorporating a substantial amount of safety examples, making it inefficient. To effectively defend against the FJAttack with limited safety examples, we propose a Backdoor Enhanced Safety Alignment method inspired by an analogy with the concept of backdoor attacks. In particular, we construct prefixed safety examples by integrating a secret prompt, acting as a "backdoor trigger", that is prefixed to safety examples. Our comprehensive experiments demonstrate that through the Backdoor Enhanced Safety Alignment with adding as few as 11 prefixed safety examples, the maliciously fine-tuned LLMs will achieve similar safety performance as the original aligned models. Furthermore, we also explore the effectiveness of our method in a more practical setting where the fine-tuning data consists of both FJAttack examples and the fine-tuning task data. Our method shows great efficacy in defending against FJAttack without harming the performance of fine-tuning tasks.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要