Energy-Efficient Active Element Selection in RIS-aided Massive MIMO Systems

CoRR(2024)

引用 0|浏览0
暂无评分
摘要
This chapter delves into the critical aspects of optimizing energy efficiency (EE) in active reconfigurable intelligent surface (RIS)-assisted massive MIMO (M-MIMO) wireless communication systems. We develop a comprehensive and unified theoretical framework to analyze the boundaries of EE within M-MIMO systems integrated with active RIS while adhering to practical constraints. Our research focuses on a formulated EE optimization problem aiming to maximize the EE for active RIS-assisted M-MIMO communication systems. Our goal is to strategically find the number of active RIS elements for outperforming the EE attainable by an entirely passive RIS. Besides, the proposed novel solution has been tailored to the innovative problem. The formulation and solution design consider analytical optimization techniques, such as lagrangian dual transform (LDT) and fractional programming (FP) optimization, facilitating the effective implementation of RIS-aided M-MIMO applications in real-world settings. In particular, our results show that the proposed algorithm can provide up to 120 higher EE than the entirely passive RIS. Besides, we found that the active RIS can operate with less than half of the reflecting elements for the entirely passive RIS. Finally, in view of active RIS achieving the complete utilization of amplification power available, it should be equipped with a reasonable number of reflecting elements above N = 49.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要