A Multidisciplinary Approach toward CMOS Capacitive Sensor Array for Droplet Analysis

MICROMACHINES(2024)

引用 0|浏览0
暂无评分
摘要
This paper introduces an innovative method for the analysis of alcohol-water droplets on a CMOS capacitive sensor, leveraging the controlled thermal behavior of the droplets. Using this sensing method, the capacitive sensor measures the total time of evaporation (ToE), which can be influenced by the droplet volume, temperature, and chemical composition. We explored this sensing method by introducing binary mixtures of water and ethanol or methanol across a range of concentrations (0-100%, with 10% increments). The experimental results indicate that while the capacitive sensor is effective in measuring both the total ToE and dielectric properties, a higher dynamic range and resolution are observed in the former. Additionally, an array of sensing electrodes successfully monitors the droplet-sensor surface interaction. However practical considerations such as the creation of parasitic capacitance due to mismatch, arise from the large sensing area in the proposed capacitive sensors and other similar devices. In this paper, we discuss this non-ideality and propose a solution. Also, this paper showcases the benefits of utilizing a CMOS capacitive sensing method for accurately measuring ToE.
更多
查看译文
关键词
CMOS,capacitive sensor,droplet analysis,life science applications,time of evaporation
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要