One-dimensional proximity superconductivity in the quantum Hall regime

Julien Barrier,Minsoo Kim,Roshan Krishna Kumar,Na Xin, P. Kumaravadivel, Lee Hague, E. Nguyen, A. I. Berdyugin,Christian Moulsdale, V. V. Enaldiev, J. R. Prance, F. H. L. Koppens,R. V. Gorbachev, K. Watanabe, T. Taniguchi, L. I. Glazman, I. V. Grigorieva, V. I. Fal'ko, A. K. Geim

arxiv(2024)

引用 0|浏览8
暂无评分
摘要
Extensive efforts have been undertaken to combine superconductivity and the quantum Hall effect so that Cooper-pair transport between superconducting electrodes in Josephson junctions is mediated by one-dimensional edge states. This interest has been motivated by prospects of finding new physics, including topologically-protected quasiparticles, but also extends into metrology and device applications. So far it has proven challenging to achieve detectable supercurrents through quantum Hall conductors. Here we show that domain walls in minimally twisted bilayer graphene support exceptionally robust proximity superconductivity in the quantum Hall regime, allowing Josephson junctions to operate in fields close to the upper critical field of superconducting electrodes. The critical current is found to be non-oscillatory and practically unchanging over the entire range of quantizing fields, with its value being limited by the quantum conductance of ballistic, strictly one-dimensional electronic channels residing within the domain walls. The system described is unique in its ability to support Andreev bound states at quantizing fields and offers many interesting directions for further exploration.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要