New Mass Window for Primordial Black Holes as Dark Matter from Memory Burden Effect

arxiv(2024)

引用 0|浏览0
暂无评分
摘要
The mass ranges allowed for Primordial Black Holes (PBHs) to constitute all of Dark Matter (DM) are broadly constrained. However, these constraints rely on the standard semiclassical approximation which assumes that the evaporation process is self-similar. Quantum effects such as memory burden take the evaporation process out of the semiclassical regime latest by half-decay time. What happens beyond this time is currently not known. However, theoretical evidence based on prototype models indicates that the evaporation slows down thereby extending the lifetime of a black hole. This modifies the mass ranges constrained, in particular, by BBN and CMB spectral distortions. We show that previous constraints are largely relaxed when the PBH lifetime is extended, making it possible for PBHs to constitute all of DM in previously excluded mass ranges. In particular, this is the case for PBHs lighter than 10^9g which enter the memory burden stage before BBN and are still present today as DM.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要