Highly Interfacial Active Gemini Surfactants as Simple and Versatile Emulsifiers for Stabilizing, Lubricating and Structuring Liquids

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION(2024)

引用 0|浏览5
暂无评分
摘要
To date, locking the shape of liquids into non-equilibrium states usually relies on jamming nanoparticle surfactants at an oil/water interface. Here we show that a synthetic water-soluble zwitterionic Gemini surfactant can serve as an alternative to nanoparticle surfactants for stabilizing, structuring and additionally lubricating liquids. By having a high binding energy comparable to amphiphilic nanoparticles at the paraffin oil/water interface, the surfactant can attain near-zero interfacial tensions and ultrahigh surface coverages after spontaneous adsorption. Owing to the strong association between neighboring surfactant molecules, closely packed monolayers with high mechanical elasticity can be generated at the oil/water interface, thus allowing the surfactant to produce not only ultra-stable emulsions but also structured liquids with various geometries by using extrusion printing and 3D printing techniques. By undergoing tribochemical reactions at its sulfonic terminus, the surfactant can endow the resultant emulsions with favorable lubricity even under high load-bearing conditions. Our study may provide new insights into creating complex liquid devices and new-generation lubricants capable of combining the characteristics of both liquid and solid lubricants. Liquid structuring usually relies on the interfacial jamming of nanoparticle surfactants. Here we show that not only droplets in non-equilibrium shapes but also printed liquid patterns with useful geometries can be created from a highly interfacial active molecular Gemini surfactant that generates elastic, "solid-like" monolayers at the oil/water interface. The surfactant can also be used to produce ultra-stable emulsions with potent lubricity. image
更多
查看译文
关键词
interfacial activity,Gemini surfactants,structured liquids,emulsions,lubrication
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要