The effect of lightning on the atmospheric chemistry of exoplanets and potential biosignatures

arxiv(2024)

引用 0|浏览3
暂无评分
摘要
Lightning has been suggested to play a role in triggering the occurrence of bio-ready chemical species. Future missions (PLATO, ARIEL, HWO, LIFE) and ground-based ELTs will investigate the atmospheres of potentially habitable exoplanets. We aim to study the effect of lightning on the atmospheric chemistry, how it affects false-positive and false-negative biosignatures, and if its effect would be observable on an exo-Earth and on TRAPPIST-1 planets. We use a combination of laboratory experiments, photochemical and radiative transfer modelling. With spark discharge experiments in N2-CO2-H2 gas mixtures, representing a range of possible rocky-planet atmospheres, we investigate the production of potential lightning signatures (CO, NO), possible biosignature gases (N2O, NH3, CH4), and important prebiotic precursors (HCN, Urea). Photochemical simulations are conducted for oxygen-rich and anoxic atmospheres for rocky planets in the habitable zones of the Sun and TRAPPIST-1 for a range of lightning flash rates. Synthetic spectra are calculated using SMART to study the atmosphere's reflectance, emission, and transmission spectra. Lightning enhances the spectral features of NO, NO2, and, in some cases, CO; CH4 and C2H6 may be enhanced indirectly. Lightning at a flash rate slightly higher than on modern Earth can mask the ozone features of an oxygen-rich, biotic atmosphere, making it harder to detect the biosphere. Lightning flash rates at least ten times higher than on modern Earth can mask the presence of ozone in the anoxic, abiotic atmosphere of a planet orbiting a late M dwarf, reducing the potential for a false-positive life-detection. The threshold lightning rates to eliminate oxygen and ozone false positive biosignatures on planets orbiting ultra-cool dwarfs is up to ten times higher than the modern flash rate, suggesting that lightning cannot always prevent these false-positive scenarios.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要