Guarantees on Warm-Started QAOA: Single-Round Approximation Ratios for 3-Regular MAXCUT and Higher-Round Scaling Limits

Reuben Tate,Stephan Eidenbenz

CoRR(2024)

引用 0|浏览0
暂无评分
摘要
We generalize Farhi et al.'s 0.6924-approximation result technique of the Max-Cut Quantum Approximate Optimization Algorithm (QAOA) on 3-regular graphs to obtain provable lower bounds on the approximation ratio for warm-started QAOA. Given an initialization angle θ, we consider warm-starts where the initial state is a product state where each qubit position is angle θ away from either the north or south pole of the Bloch sphere; of the two possible qubit positions the position of each qubit is decided by some classically obtained cut encoded as a bitstring b. We illustrate through plots how the properties of b and the initialization angle θ influence the bound on the approximation ratios of warm-started QAOA. We consider various classical algorithms (and the cuts they produce which we use to generate the warm-start). Our results strongly suggest that there does not exist any choice of initialization angle that yields a (worst-case) approximation ratio that simultaneously beats standard QAOA and the classical algorithm used to create the warm-start. Additionally, we show that at θ=60^∘, warm-started QAOA is able to (effectively) recover the cut used to generate the warm-start, thus suggesting that in practice, this value could be a promising starting angle to explore alternate solutions in a heuristic fashion. Finally, for any combinatorial optimization problem with integer-valued objective values, we provide bounds on the required circuit depth needed for warm-started QAOA to achieve some change in approximation ratio; more specifically, we show that for small θ, the bound is roughly proportional to 1/θ.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要