A novel thermophilic strain of Bacillus subtilis with antimicrobial activity and its potential application in solid-state fermentation of soybean meal

Nanshan Qi,Xiaoshu Zhan, Joshua Milmine, Kai-Hsiang Chang,Julang Li

MICROBIOLOGY SPECTRUM(2024)

Cited 0|Views6
No score
Abstract
Soybean meal (SBM) is the most important source of plant protein in animal feeds, containing around 41%-48% crude protein. Nevertheless, 70%-80% of these proteins is allergenic antigens that can have adverse implications for the gastrointestinal well-being of animals, especially to young animals. Microbial fermentation is one of the most cost-effective strategies used to reduce allergenic antigens from plant sources. In this study, we report the isolation and characterization of a novel probiotic Bacillus subtilis "L5" strain from lake mud. L5 demonstrated remarkable temperature tolerance across a broad temperature spectrum, thriving at 25(degrees)C, 37(degrees)C, and 50(degrees)C. In addition, antimicrobial assay revealed that L5 exhibits strong antimicrobial activity against Escherichia coli, effectively reducing or eliminating the growth of Gram-negative bacteria in SBM when fermented with L5. When applied to SBM fermentation, L5 efficiently reduced SBM antinutritional factors such as glycinin, beta-conglycinin, trypsin inhibitor, phytic acid, neutral detergent fiber, and acid detergent fiber, which in turn results in an increase in crude protein content and the free amino acid concentration. Our findings on the probiotic and fermentation capabilities of L5 suggest that this novel bacterium has dual functions that make it a strong candidate for improving the nutrient values of feed via its role in fermentation.
More
Translated text
Key words
Bacillus subtilis,antimicrobial activity,thermophilic,soybean meal,solid-state fermentation
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined