Early feasibility of an embedded bi-directional brain-computer interface for ambulation

arxiv(2024)

引用 0|浏览1
暂无评分
摘要
Current treatments for paraplegia induced by spinal cord injury (SCI) are often limited by the severity of the injury. The accompanying loss of sensory and motor functions often results in reliance on wheelchairs, which in turn causes reduced quality of life and increased risk of co-morbidities. While brain-computer interfaces (BCIs) for ambulation have shown promise in restoring or replacing lower extremity motor functions, none so far have simultaneously implemented sensory feedback functions. Additionally, many existing BCIs for ambulation rely on bulky external hardware that make them ill-suited for non-research settings. Here, we present an embedded bi-directional BCI (BDBCI), that restores motor function by enabling neural control over a robotic gait exoskeleton (RGE) and delivers sensory feedback via direct cortical electrical stimulation (DCES) in response to RGE leg swing. A first demonstration with this system was performed with a single subject implanted with electrocorticography electrodes, achieving an average lag-optimized cross-correlation of 0.80±0.08 between cues and decoded states over 5 runs.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要