Adaptive Decision-Making for Autonomous Vehicles: A Learning-Enhanced Game-Theoretic Approach in Interactive Environments

CoRR(2024)

引用 0|浏览5
暂无评分
摘要
This paper proposes an adaptive behavioral decision-making method for autonomous vehicles (AVs) focusing on complex merging scenarios. Leveraging principles from non-cooperative game theory, we develop a vehicle interaction behavior model that defines key traffic elements and integrates a multifactorial reward function. Maximum entropy inverse reinforcement learning (IRL) is employed for behavior model parameter optimization. Optimal matching parameters can be obtained using the interaction behavior feature vector and the behavior probabilities output by the vehicle interaction model. Further, a behavioral decision-making method adapted to dynamic environments is proposed. By establishing a mapping model between multiple environmental variables and model parameters, it enables parameters online learning and recognition, and achieves to output interactive behavior probabilities of AVs. Quantitative analysis employing naturalistic driving datasets (highD and exiD) and real-vehicle test data validates the model's high consistency with human decision-making. In 188 tested interaction scenarios, the average human-like similarity rate is 81.73 Furthermore, in 145 dynamic interactions, the method matches human decisions at 77.12 72.73 the effectiveness of our proposed method in enabling AVs to make informed adaptive behavior decisions in interactive environments.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要