Indium nanocubes based recyclable fluorescent chemosensor for sustainable environmental monitoring: pH-induced fluorescence transition and selective detection of Pd(II) ions

Pooja Sharma,Sudhanshu Naithani, Vikas Yadav, Sangeeta, Biswajit Guchhait,Sushil Kumar,Tapas Goswami

Science of The Total Environment(2024)

引用 0|浏览0
暂无评分
摘要
Rapid modern industrialization and urbanization have escalated heavy metal pollution, with palladium (Pd2+) raising significant concerns due to its extensive usage in catalysis, hydrogen storage, and electronics, thereby imposing substantial risks on the environment and human health. In this study, we report a highly fluorescent indium nanocubes based chemosensor (InNCs) functionalized with perylene tetracarboxylic acid (PTCA) and 4-(pyridyl)ethenyl benzene (PEB). The InNCs exhibited emission maximum at 415 nm (λex ∼ 350 nm) with robust chemical and photo-stability, and acted as a fluorogenic probe for selective recognition of Pd2+ in aqueous medium. The fluorescence sensing properties of InNCs were thoroughly assessed via different techniques including steady-state absorption, emission and time-resolved emission spectroscopic methods. Among the various competitive analytes, only Pd2+ could induce a significant fluorescence quenching in the probe. This “turn-off” fluorescence sensing demonstrated a remarkably low LoD of ∼65 nM. Notably, with the addition of EDTA, the probe displayed good recyclability upto 4 cycles. The sensory probe was successfully employed as a reusable platform to estimate Pd(II) in different real water and soil samples with considerable accuracy (∼ 5–10 % error). Moreover, the probe exhibited a pH-induced fluorescence transition, indicating its potential to be applied as a pH sensor. The Pd(II) binding and pH-sensing mechanisms have also been elucidated through density functional theory (DFT) calculations.
更多
查看译文
关键词
Sensor,Fluorescence,Heavy metals,Water pollution,Nanomaterials
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要