Evolution of the relation between the mass accretion rate and the stellar and disk mass from brown dwarfs to stars

arxiv(2024)

Cited 0|Views4
No score
Abstract
The time evolution of the dependence of the mass accretion rate with the stellar mass and the disk mass represents a fundamental way to understand the evolution of protoplanetary disks and the formation of planets. In this work, we present observations with X-Shooter of 26 Class II very low-mass stars and brown dwarfs in the Ophiuchus, Cha-I, and Upper Scorpius star-forming regions (SFRs). These new observations extend down to SpT M9 (∼0.02 M_⊙) the measurement of the mass accretion rate in Ophiuchus and Cha-I and add 11 very-low-mass stars to the sample of objects studied with broadband spectroscopy in Upper Scorpius. We obtained their SpT, extinction and physical parameters, and we used the intensity of various emission lines to derive their accretion luminosity and mass accretion rates. Combining these new observations with data from the literature, we compare relations between accretion and stellar and disk properties of four different SFRs with different ages: Ophiuchus (1 Myr), Lupus (2 Myr), Cha-I (3 Myr), and Upper Scorpius (5-12 Myr). We find the slopes of the L_*-L_acc and M_*-Ṁ_acc relationships to steepen between Ophiuchus, Lupus, and Cha-I and that both relationships may be better described with a single power law. We also find the relationship between the disk mass and the mass accretion rate of the stellar population to steepen with time down to the age of Upper Scorpius. Overall, we observe hints of a faster evolution into low accretion rates of low-mass stars and brown dwarfs. We also find that brown dwarfs present higher M_disk/Ṁ_acc ratios (i.e., longer accretion depletion timescales) than stars in Ophiuchus, Lupus, and Cha-I. This apparently contradictory result may imply that the evolution of protoplanetary disks around brown dwarfs is different from what is seen in the stellar regime.
More
Translated text
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined