Chrome Extension
WeChat Mini Program
Use on ChatGLM

In situ annealing of nanoporous silicon thin films with transmission electron microscopy

APPLIED PHYSICS LETTERS(2023)

Cited 0|Views5
No score
Abstract
Nanoporous films have potential applications in thermoelectric cooling on a chip, sensors, solar cells, and desalination. For phonon transport, amorphization and other pore-edge defects introduced by the nanofabrication processes can eliminate wave effects by diffusively scattering short-wavelength phonons and thus destroying the phonon phase coherence. As a result, phononic effects can only be observed at 10 K or below, when long-wavelength phonons become dominant for thermal transport. In this work, a 70-nm-thick silicon thin film with approximately 100-nm-diameter nanopores was annealed under a high vacuum, and the change of pore-edge defects was observed with in situ transmission electron microscopy. It was found that the pore-edge defects can be minimized to a sub-1-nm layer by annealing between 773 and 873 K for 30 min, without changing the pore sizes. The largely reduced pore-edge defects are critical to the desired phonon wave effects within a periodic nanoporous structure.
More
Translated text
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined