Steering collision avoidance and lateral stability coordinated control based on vehicle lateral stability region

PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART D-JOURNAL OF AUTOMOBILE ENGINEERING(2024)

引用 0|浏览3
暂无评分
摘要
The balance between vehicle lateral stabilization and collision avoidance is critical for steering collision avoidance in emergency situations. On the one hand, emergency steering may cause a vehicle to lose its lateral stability. On the other hand, the overly conservative stability controller may compress the safety margin of vehicle collision avoidance, leading to failure of collision avoidance. Therefore, steering collision avoidance and lateral stability coordinated control (SCALSC) based on the vehicle stability region is proposed. The Lyapunov's Second Method is used to obtain the lateral stability region instead of the linear two-degree-of-freedom (2-DOF) vehicle states as the stability tracking target to ensure that the vehicle states are in the stability region. The SCALSC includes an active steering controller and a direct-yaw-moment controller (DYC). An active steering controller is used for collision avoidance in emergency conditions, while DYC is used for stability control. An intervention criterion for the DYC system is proposed by using the Hurwitz criterion. Finally, a simulation test was carried out based on MATLAB/Simulink. The simulation results show that the proposed coordinated control method ensures stability, improves the safety margin of collision avoidance, and realizes multiobjective coordinated control of collision avoidance and autonomous vehicle stability control in emergency situations.
更多
查看译文
关键词
Autonomous steering,coordinated control,intervention criterion,stability region,vehicle safety
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要