Theoretical and experimental investigations on 5,12-di(methyl)-quinacri-din-ylidene)-7,14-di(rhodanineimine) for optoelectronic applications

OPTICAL MATERIALS(2024)

引用 0|浏览1
暂无评分
摘要
In searching for novel organic semiconductors, 5,12-di(methyl)-quinacridin-ylidene)-7,14-di(rhodanineimine) (DQAR) is designed and chemically synthesized by using condensation reaction. The molecular structure of DQAR is supported with spectral measurements. Electronic and geometrical properties of DQAR are investigated be means of combined computational and experimental analyses. Density function theory (DFT/B3LYP) utilizing 6-311G(d,p) basis set are used to optimize DQAR molecular structure and its related geometrical parameters. The intermolecular interactions are calculated using reduced density gradient (RDG) planes. The highest occupied and lowest unoccupied molecular orbitals (HOMO and LUMO) of DQAR are experimentally estimated by using the optical absorbance and cyclic voltammetry techniques. DQAR is used as a third component in the active layer of bulk heterojunction (BHJ) solar cells. The BHJ solar cells based on P3HT:DQAR:PC61BM (P3HT = poly(3hexylthiophene and PC61BM = [6,6]-phenyl-C61-butyric acid methyl ester) active layers are found to be to be better that those based on only P3HT:PC61BM mainly due to the contribution of DQAR to the photocurrent. The obtained results are analyzed in terms of the computational and experimental data. Our initial results indicate that DQAR can be used in BHJ solar cells fabrications.
更多
查看译文
关键词
Quinacridones,DFT,Active layers,Surface morphology,Photoelectrical properties
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要