谷歌浏览器插件
订阅小程序
在清言上使用

Structural Insights into Notch Receptor-Ligand Interactions.

MOLECULAR MECHANISMS OF NOTCH SIGNALING(2018)

引用 13|浏览13
暂无评分
摘要
Pioneering cell aggregation experiments from the Artavanis-Tsakonas group in the late 1980's localized the core ligand recognition sequence in the Drosophila Notch receptor to epidermal growth factor-like (EGF) domains 11 and 12. Since then, advances in protein expression, structure determination methods and functional assays have enabled us to define the molecular basis of the core receptor/ligand interaction and given new insights into the architecture of the Notch complex at the cell surface. We now know that Notch EGF11 and 12 interact with the Delta/Serrate/LAG-2 (DSL) and C2 domains of ligand and that membrane-binding, together with additional protein-protein interactions outside the core recognition domains, are likely to fine-tune generation of the Notch signal. Furthermore, structure determination of O-glycosylated variants of Notch alone or in complex with receptor fragments, has shown that these sugars contribute directly to the binding interface, as well as to stabilizing intra-molecular domain structure, providing some mechanistic insights into the observed modulatory effects of O-glycosylation on Notch activity. Future challenges lie in determining the complete extracellular architecture of ligand and receptor in order to understand (i) how Notch/ligand complexes may form at the cell surface in response to physiological cues, (ii) the role of lipid binding in stabilizing the Notch/ligand complex, (iii) the impact of O-glycosylation on binding and signalling and (iv) to dissect the different pathologies that arise as a consequence of mutations that affect proteins involved in the Notch pathway.
更多
查看译文
关键词
EGF12,Calcium binding,Fringe,C2 domain,Lipid binding
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要