Machine learning for hypothesis generation in biology and medicine: exploring the latent space of neuroscience and developmental bioelectricity

DIGITAL DISCOVERY(2024)

引用 0|浏览0
暂无评分
摘要
Artificial intelligence is a powerful tool that could be deployed to accelerate the scientific enterprise. Here we address a major unmet need: use of existing scientific literature to generate novel hypotheses. We use a deep symmetry between the fields of neuroscience and developmental bioelectricity to evaluate a new tool, FieldSHIFT. FieldSHIFT is an in-context learning framework using a large language model to facilitate candidate scientific research from existing published studies, serving as a tool to generate hypotheses at scale. We release a new dataset for translating between the neuroscience and developmental bioelectricity domains and show how FieldSHIFT helps human scientists explore a latent space of papers that could exist, providing a rich field of suggested future research. We demonstrate the performance of FieldSHIFT for hypothesis generation relative to human-generated developmental biology research directions then test a key prediction of this model using bioinformatics, showing a surprising conservation of molecular mechanisms involved in cognitive behavior and developmental morphogenesis. By allowing scientists to rapidly explore symmetries and meta-parameters that exist in a corpus of scientific papers, we show how machine learning can potentiate human creativity and assist with one of the most interesting and crucial aspects of research: identifying insights from data and generating potential candidates for research agendas. FieldSHIFT uses in-context learning to translate neuroscience abstracts into developmental biology abstracts based on example concept mappings, creating new research hypotheses at scale.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要