A deep multiple instance learning approach based on coarse labels for high-resolution land-cover mapping

IMAGE AND SIGNAL PROCESSING FOR REMOTE SENSING XXIX(2023)

引用 0|浏览0
暂无评分
摘要
The quantity and the quality of the training labels are central problems in high-resolution land-cover mapping with machine-learning-based solutions. In this context, weak labels can be gathered in large quantities by leveraging on existing low-resolution or obsolete products. In this paper, we address the problem of training land-cover classifiers using high-resolution imagery (e.g., Sentinel-2) and weak low-resolution reference data (e.g., MODIS-derived land-cover maps). Inspired by recent works in Deep Multiple Instance Learning (DMIL), we propose a method that trains pixel-level multi-class classifiers and predicts low-resolution labels (i.e., patch-level classification), where the actual high-resolution labels are learned implicitly without direct supervision. This is achieved with flexible pooling layers that are able to link the semantics of the pixels in the high-resolution imagery to the low-resolution reference labels. Then, the Multiple Instance Learning (MIL) problem is re-framed in a multi-class and in a multi-label setting. In the former, the low-resolution annotation represents the majority of the pixels in the patch. In the latter, the annotation only provides us information on the presence of one of the land-cover classes in the patch and thus multiple labels can be considered valid for a patch at a time, whereas the low-resolution labels provide us only one label. Therefore, the classifier is trained with a Positive-Unlabeled Learning (PUL) strategy. Experimental results on the 2020 IEEE GRSS Data Fusion Contest dataset show the effectiveness of the proposed framework compared to standard training strategies.
更多
查看译文
关键词
land-cover mapping,weak supervision,multiple instance learning,deep learning,remote sensing
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要