Observation of topology transition in Floquet non-Hermitian skin effects in silicon photonics

arxiv(2024)

Cited 0|Views20
No score
Abstract
Non-Hermitian physics has greatly enriched our understanding of nonequilibrium phenomena and uncovered novel effects such as the non-Hermitian skin effect (NHSE) that has profoundly revolutionized the field. NHSE is typically predicted in systems with nonreciprocal couplings which, however, are difficult to realize in experiments. Without nonreciprocal couplings, the NHSE can also emerge in systems with coexisting gauge fields and loss or gain (e.g., in Floquet non-Hermitian systems). However, such Floquet NHSE remains largely unexplored in experiments. Here, we realize the Floquet NHSEs in periodically modulated optical waveguides integrated on a silicon photonics platform. By engineering the artificial gauge fields induced by the periodical modulation, we observe various Floquet NHSEs and unveil their rich topological transitions. Remarkably, we discover the transitions between the normal unipolar NHSEs and an unconventional bipolar NHSE which is accompanied by the directional reversal of the NHSEs. The underlying physics is revealed by the band winding in complex quasienergy space which undergoes a topology change from isolated loops with the same winding to linked loops with opposite windings. Our work unfolds a new route toward Floquet NHSEs originating from the interplay between gauge fields and dissipation effects and offers fundamentally new ways for steering light and other waves.
More
Translated text
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined