Partial Synchrony for Free? New Upper Bounds for Byzantine Agreement

arxiv(2024)

引用 0|浏览0
暂无评分
摘要
Byzantine agreement allows n processes to decide on a common value, in spite of arbitrary failures. The seminal Dolev-Reischuk bound states that any deterministic solution to Byzantine agreement exchanges Omega(n^2) bits. In synchronous networks, solutions with optimal O(n^2) bit complexity, optimal fault tolerance, and no cryptography have been established for over three decades. However, these solutions lack robustness under adverse network conditions. Therefore, research has increasingly focused on Byzantine agreement for partially synchronous networks. Numerous solutions have been proposed for the partially synchronous setting. However, these solutions are notoriously hard to prove correct, and the most efficient cryptography-free algorithms still require O(n^3) exchanged bits in the worst case. In this paper, we introduce Oper, the first generic transformation of deterministic Byzantine agreement algorithms from synchrony to partial synchrony. Oper requires no cryptography, is optimally resilient (n >= 3t+1, where t is the maximum number of failures), and preserves the worst-case per-process bit complexity of the transformed synchronous algorithm. Leveraging Oper, we present the first partially synchronous Byzantine agreement algorithm that (1) achieves optimal O(n^2) bit complexity, (2) requires no cryptography, and (3) is optimally resilient (n >= 3t+1), thus showing that the Dolev-Reischuk bound is tight even in partial synchrony. Moreover, we adapt Oper for long values and obtain several new partially synchronous algorithms with improved complexity and weaker (or completely absent) cryptographic assumptions.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要