Knowledge Distillation Guided Interpretable Brain Subgraph Neural Networks for Brain Disorder Exploration

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS(2024)

引用 0|浏览15
暂无评分
摘要
The human brain is a highly complex neurological system that has been the subject of continuous exploration by scientists. With the help of modern neuroimaging techniques, there has been significant progress made in brain disorder analysis. There is an increasing interest about utilizing artificial intelligence techniques to improve the efficiency of disorder diagnosis in recent years. However, these methods rely only on neuroimaging data for disorder diagnosis and do not explore the pathogenic mechanism behind the disorder or provide an interpretable result toward the diagnosis decision. Furthermore, the scarcity of medical data limits the performance of existing methods. As the hot application of graph neural networks (GNNs) in molecular graphs and drug discovery due to its strong graph-structured data learning ability, whether GNNs can also play a huge role in the field of brain disorder analysis. Thus, in this work, we innovatively model brain neuroimaging data into graph-structured data and propose knowledge distillation (KD) guided brain subgraph neural networks to extract discriminative subgraphs between patient and healthy brain graphs to explain which brain regions and abnormal functional connectivities cause the disorder. Specifically, we introduce the KD technique to transfer the knowledge of pretrained teacher model to guide brain subgraph neural networks training and alleviate the problem of insufficient training data. And these discriminative subgraphs are conducive to learn better brain graph-level representations for disorder prediction. We conduct abundant experiments on two functional magnetic resonance imaging datasets, i.e., Parkinson's disease (PD) and attention-deficit/hyperactivity disorder (ADHD), and experimental results well demonstrate the superiority of our method over other brain graph analysis methods for disorder prediction accuracy. The interpretable experimental results given by our method are consistent with corresponding medical research, which is encouraging to provide a potential for deeper brain disorder study.
更多
查看译文
关键词
Brain disorder analysis,brain graph mining,functional magnetic resonance imaging (fMRI) data,graph neural networks (GNNs)
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要