Heat transfer exploration for bioconvected tangent hyperbolic nanofluid flow with activation energy and joule heating induced by Riga plate

CASE STUDIES IN THERMAL ENGINEERING(2024)

引用 0|浏览8
暂无评分
摘要
Tangent hyperbolic nanofluid enhances heat transfer in various applications, such as cooling systems and electronics, due to its improved thermal conductivity and stability. Therefore current analysis explore the inspiration of joule heating and activation energy on Tangent hyperbolic nanofluid in the existence of motile microorganism. For motivation the impact of Riga plate, variable thermal conductivity, thermal radiation and heat source are the part of this investigation. The appropriate similarity variable are assumed to transformed the set of governing partial differential equations considering the influential effects of Joule heating and activation energy into ordinary differential equations. MATLAB via bvp5c tool is engaged to solve resulting system. The effects of dimensionless parameters like Weissenberg number We, Power-law index Power-law index n, Hartmann number M, thermal radiation Rd, Brownian motion Nb, Prandtl number Pr, Peclet number Pe and thermophoresis Nt on velocity f '(eta) temperature theta(eta), volumetric concentration of nano particles phi(eta) and density profile chi(eta) are displayed in graphical and tabulated form. It is noted that improving the Weissenberg number We, Hartmann number M and Powerlaw index n, the speed of flow decreased. By increasing value of Prandtl number Pr the temperature curve reduced, inverse relation is observed for growing value of Rd.
更多
查看译文
关键词
Activation energy,Tangent hyperbolic fluid,Thermal radiation,Nanoparticles,Weissenberg number,Nanofluidics
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要