Strain-specific requirements of susceptibility to rhesus enteric calicivirus infection

Tibor Farkas, Vinod Srivastava

JOURNAL OF VIROLOGY(2024)

引用 0|浏览0
暂无评分
摘要
Recently, we identified the coxsackie and adenovirus receptor (CAR) as the entry receptor for rhesus enteric calicivirus (ReCV) isolate FT285 and demonstrated that co-expression of the CAR and the type B histo-blood group antigen (HBGA) is required to convert the resistant CHO cell line susceptible to infection. To address whether the CAR is also the functional entry receptor for other ReCV isolates and the requirement for specific HBGAs or other glycans, here we used a panel of recombinant CHO cell lines expressing the CAR and the type A, B, or H HBGAs alone or in combination. Infection studies with three diverse ReCV strains, the prototype GI.1 Tulane virus (TV), GI.2 ReCV-FT285, and GI.3 ReCV-FT7, identified that cell surface expression of the CAR is an absolute requirement for all three strains to promote susceptibility to infection, while the requirement for HBGAs varies among the strains. In addition to the CAR, ReCV-FT285 and TV require type A or B HBGAs for infection. In the absence of HBGAs, TV, but not Re-CV FT285, can also utilize sialic acids, while ReCV-FT7 infection is HBGA-independent and relies on CAR and sialic acid expression. In summary, we demonstrated strain-specific diversity of susceptibility requirements for ReCV infections and that CAR, type A and B HBGA, and sialic acid expression control susceptibility to infection with the three ReCV isolates studied. Our study also indicates that the correlation between in vitro HBGA binding and HBGAs required for infection is relatively high, but not absolute. This has direct implications for human noroviruses.IMPORTANCEHuman noroviruses (HuNoVs) are important enteric pathogens. The lack of a robust HuNoV cell culture system is a bottleneck for HuNoV cell culture-based studies. Often, cell culture-adapted caliciviruses that rapidly replicate in conventional cell lines and recapitulate biological features of HuNoVs are utilized as surrogates. Particularly, rhesus enteric caliciviruses (ReCVs) display remarkable similarities, including the primate host, clinical manifestation of gastroenteritis, genetic/antigenic diversity, and reliance on histo-blood group antigens (HBGAs) for attachment. While the HuNoV entry receptor(s) is unknown, the coxsackie and adenovirus receptor (CAR) has recently been identified as the ReCV entry receptor. Here, we identified the CAR, the type A and B HBGAs, and sialic acids as critical cell surface molecules controlling susceptibility to ReCV infections. The CAR is required for all ReCV isolates studied. However, the requirement for the different carbohydrate molecules varies among different ReCV strains. Our findings have direct implications for HuNoVs. Human noroviruses (HuNoVs) are important enteric pathogens. The lack of a robust HuNoV cell culture system is a bottleneck for HuNoV cell culture-based studies. Often, cell culture-adapted caliciviruses that rapidly replicate in conventional cell lines and recapitulate biological features of HuNoVs are utilized as surrogates. Particularly, rhesus enteric caliciviruses (ReCVs) display remarkable similarities, including the primate host, clinical manifestation of gastroenteritis, genetic/antigenic diversity, and reliance on histo-blood group antigens (HBGAs) for attachment. While the HuNoV entry receptor(s) is unknown, the coxsackie and adenovirus receptor (CAR) has recently been identified as the ReCV entry receptor. Here, we identified the CAR, the type A and B HBGAs, and sialic acids as critical cell surface molecules controlling susceptibility to ReCV infections. The CAR is required for all ReCV isolates studied. However, the requirement for the different carbohydrate molecules varies among different ReCV strains. Our findings have direct implications for HuNoVs.
更多
查看译文
关键词
recovirus,histo-blood group antigen,coxsackie and adenovirus receptor,susceptibility to infection
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要