High Pressure Suppression of Plasticity due to Over-Nucleation of Shear Strain

arxiv(2024)

Cited 0|Views3
No score
Abstract
High pressure shear band formation is a critical phenomenon in energetic materials due to its influence on both mechanical strength and mechanochemical activation. While shear banding is know to occur in a variety of these materials, the governing dynamics of the mechanisms is not well defined for molecular crystals. We conduct molecular dynamics simulations of shock wave induced shear band formation in the energetic material 1,3,5-trinitroperhydro-1,3,5-triazine (RDX) to assess shear band nucleation processes. We find, that at high pressures, the initial formation sites for shear bands 'over-nucleate' and rapidly lower deviatoric stresses prior to shear band formation and growth. This results in the suppression of plastic deformation. A local cluster analysis is used to quantify and contrast this mechanism with a more typical shear banding seen at lower pressures. These results demonstrate a mechanism that is reversible in nature and that supersedes shear band formation at increased pressures. We anticipate that these results will have a broad impact on the modeling and development of high strain rate application materials such as those for high explosives and hypersonic systems.
More
Translated text
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined