Chrome Extension
WeChat Mini Program
Use on ChatGLM

OPTIma: simplifying calorimetry for proton computed tomography in high proton flux environments

PHYSICS IN MEDICINE AND BIOLOGY(2024)

Cited 0|Views13
No score
Abstract
Objective. Proton computed tomography (pCT) offers a potential route to reducing range uncertainties for proton therapy treatment planning, however the current trend towards high current spot scanning treatment systems leads to high proton fluxes which are challenging for existing systems. Here we demonstrate a novel approach to energy reconstruction, referred to as 'de-averaging', which allows individual proton energies to be recovered using only a measurement of their integrated energy without the need for spatial information from the calorimeter. Approach. The method is evaluated in the context of the Optimising Proton Therapy through Imaging (OPTIma) system which uses a simple, relatively inexpensive, scintillator-based calorimeter that reports only the integrated energy deposited by all protons within a cyclotron period, alongside a silicon strip based tracking system capable of reconstructing individual protons in a high flux environment. GEANT4 simulations have been performed to examine the performance of such a system at a modern commercial cyclotron facility using a sigma approximate to 10 mm beam for currents in the range 10-50 pA at the nozzle. Main results. Apart from low-density lung tissue, a discrepancy of less than 1% on the Relative Stopping Power is found for all other considered tissues when embedded within a 150 mm spherical Perspex phantom in the 10-30 pA current range, and for some tissues even up to 50 pA. Significance. By removing the need for the calorimeter system to provide spatial information, it is hoped that the de-averaging approach can facilitate clinically relevant, cost effective and less complex calorimeter systems for performing high current pCTs.
More
Translated text
Key words
calorimetery,hadron therapy,medical imaging
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined