MOF-derived NiAl2O4/NiCo2O4 porous materials as supercapacitors with high electrochemical performance.

Changyu Hu,Huidong Xie, Yibo Wang,Hu Liu,Yajuan Zhao,Chang Yang

Physical chemistry chemical physics : PCCP(2024)

引用 0|浏览0
暂无评分
摘要
Metal-organic framework compounds are extensively utilized in various fields, such as electrode materials, owing to their distinctive porous structure and significant specific surface area. In this study, NiCoAl-MOF metal-organic framework precursors were synthesized by a solvothermal method, and NiAl2O4/NiCo2O4 electrode materials were prepared by the subsequent calcination of the precursor. These materials were characterized by XRD, XPS, BET tests, and SEM, and the electrochemical properties of the electrode materials were tested by CV and GCD methods. BET tests showed that NiAl2O4/NiCo2O4 has an abundant porous structure and a large specific surface area of up to 105 m2 g-1. The specific capacitance of NiAl2O4/NiCo2O4 measured by the GCD method reaches up to 2870.83 F g-1 at a current density of 1 A g-1. The asymmetric supercapacitor NiAl2O4/NiCo2O4//AC assembled with activated carbon electrodes has a maximum energy density of 166.98 W h kg-1 and a power density of 750.00 W kg-1 within a voltage window of 1.5 V. In addition, NiAl2O4/NiCo2O4 materials have good cycling stability. These advantages make it a good candidate for the application of high-performance supercapacitors.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要