Room-temperature optically detected coherent control of molecular spins

Adrian Mena, Sarah K. Mann, Angus Cowley-Semple, Emma Bryan,Sandrine Heutz,Dane R. McCamey,Max Attwood,Sam L. Bayliss

arxiv(2024)

引用 0|浏览1
暂无评分
摘要
Benefiting from both molecular tunability and versatile methods for deployment, optically interfaced molecular spins are a promising platform for quantum technologies such as sensing and imaging. Room-temperature optically detected coherent spin control is a key enabler for many applications, combining sensitive readout, versatile spin manipulation, and ambient operation. Here we demonstrate such functionality in a molecular spin system. Using the photoexcited triplet state of organic chromophores (pentacene doped in a para-terphenyl host), we optically detect coherent spin manipulation with photoluminescence contrasts exceeding 10 room temperature. We further demonstrate how coherent control of multiple triplet sublevels can significantly enhance optical spin contrast, and extend optically detected coherent control to a thermally evaporated thin film, retaining high photoluminescence contrast and coherence times of order one microsecond. These results open opportunities for room-temperature quantum technologies that can be systematically tailored through synthetic chemistry.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要