Radiationless decay spectrum of O 1s double core holes in liquid water

arxiv(2024)

引用 0|浏览12
暂无评分
摘要
We present a combined experimental and theoretical investigation of the radiationless decay spectrum of an O 1s double core hole in liquid water. Our experiments were carried out using liquid-jet electron spectroscopy from cylindrical microjets of normal and deuterated water. The signal of the double-core-hole spectral fingerprints (hypersatellites) of liquid water is clearly identified, with an intensity ratio to Auger decay of singly charged O 1s of 0.0014(5). We observe a significant isotope effect between liquid H_2O and D_2O. For theoretical modeling, the Auger electron spectrum of the central water molecule in a water pentamer was calculated using an electronic-structure toolkit combined with molecular-dynamics simulations to capture the influence of molecular rearrangement within the ultrashort lifetime of the double core hole. We obtained the static and dynamic Auger spectra for H_2O, (H_2O)_5, D_2O, and (D_2O)_5, instantaneous Auger spectra at selected times after core-level ionization, and the symmetrized oxygen-hydrogen distance as a function of time after double core ionization for all four prototypical systems. We consider this observation of liquid-water double core holes as a new tool to study ultrafast nuclear dynamics.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要