Hyperbranched Polymer Induced Antibacterial Tree-Like Nanofibrous Membrane for High Effective Air Filtration.

Weitao Zhao, Mengxuan Wang, Ying Yao, Zhongqiu Cheng, Yaxinru Shen,Yufan Zhang,Jin Tao,Jiaqing Xiong,Hongmei Cao,Desuo Zhang

Macromolecular rapid communications(2024)

Cited 0|Views3
No score
Abstract
The air filtration materials with high efficiency, low resistance, and extra antibacterial property are crucial for personal health protection. Herein, a tree-like polyvinylidene fluoride (PVDF) nanofibrous membrane with hierarchical structure (trunk fiber of 447 nm, branched fiber of 24.7 nm) and high filtration capacity is demonstrated. Specifically, 2-hydroxypropyl trimethyl ammonium chloride terminated hyperbranched polymer (HBP-HTC) with near-spherical three-dimensional molecular structure and adjustable terminal positive groups is synthesized as an additive for PVDF electrospinning to enhance the jet splitting and promote the formation of branched ultrafine nanofibers, achieving a coverage rate of branched nanofibers over 90% that is superior than small molecular quaternary ammonium salts. The branched nanofibers network enhances mechanical properties and filtration efficiency (99.995% for 0.26 µm sodium chloride particles) of the PVDF/HBP-HTC membrane, which demonstrates reduced pressure drop (122.4 Pa) and a quality factor up to 0.083 Pa-1 on a 40 µm-thick sample. More importantly, the numerous quaternary ammonium salt groups of HBP-HTC deliver excellent antibacterial properties to the PVDF membranes. Bacterial inhibitive rate of 99.9% against both S. aureus and E. coli is demonstrated in a membrane with 3.0 wt% HBP-HTC. This work provides a new strategy for development of high-efficiency and antibacterial protection products.
More
Translated text
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined