Structural and thermal analyses in semiconducting and metallic zigzag single-walled carbon nanotubes using molecular dynamics simulations

PLOS ONE(2024)

引用 0|浏览0
暂无评分
摘要
Equilibrium molecular dynamics (EMD) simulations have been performed to investigate the structural analysis and thermal conductivity (lambda) of semiconducting (8,0) and metallic (12,0) zigzag single-walled carbon nanotubes (SWCNTs) for varying +/-gamma(%) strains. For the first time, the present outcomes provide valuable insights into the relationship between the structural properties of zigzag SWCNTs and corresponding thermal behavior, which is essential for the development of high-performance nanocomposites. The radial distribution function (RDF) has been employed to assess the buckling and deformation understandings of the (8,0) and (12,0) SWCNTs for a wide range of temperature T(K) and varying +/-gamma(%) strains. The visualization of SWCNTs shows that the earlier buckling and deformation processes are observed for semiconducting SWCNTs as compared to metallic SWCNTs for high T(K) and it also evident through an abrupt increase in RDF peaks. The RDF and visualization analyses demonstrate that the (8,0) SWCNTs can more tunable under compressive than tensile strains, however, the (12,0) zigzag SWCNTs indicate an opposite trend and may tolerate more tensile than compressive strains. Investigations show that the tunable domain of +/-gamma(%) strains decreases from (-10%<= gamma <=+19%) to (-5%<= gamma <=+10%) for (8,0) SWCNTs and the buckling process shifts to lower +/-gamma(%) for (12,0) SWCNTs with increasing T(K). For intermediate-high T(K), the lambda(T) of (12,0) SWCNTs is high but the (8,0) SWCNTs show certainly high lambda(T) for low T(K). The present lambda(T, +/-gamma) data are in reasonable agreement with parts of previous NEMD, GK-HNEMD data and experimental investigations with simulation results generally under predicting the lambda(T, +/-gamma) by the similar to 1% to similar to 20%, regardless of the +/-gamma(%) strains, depending on T(K). Our simulation data significantly expand the strain range to -10% <= gamma <= +19% for both zigzag SWCNTs, depending on temperature T(K). This extension of the range aims to establish a tunable regime and delve into the intrinsic characteristics of zigzag SWCNTs, building upon previous work.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要