Single-cell coating with biomimetic extracellular nanofiber matrices

ACTA BIOMATERIALIA(2024)

引用 0|浏览21
暂无评分
摘要
Cell therapies offer great promise in the treatment of diseases and tissue regeneration, but their clinical use has many challenges including survival, optimal performance in their intended function, or localization at sites where they are needed for effective outcomes. We report here on a method to coat a biodegradable matrix of biomimetic nanofibers on single cells that could have specific functions ranging from cell signaling to targeting and helping cells survive when used for therapies. The fibers are composed of peptide amphiphile (PA) molecules that self-assemble into supramolecular nanoscale filaments. The PA nanofibers were able to create a mesh-like coating for a wide range of cell lineages with nearly 100 % efficiency, without interrupting the natural cellular phenotype or functions. The targeting abilities of this system were assessed in vitro using human primary regulatory T (hTreg) cells coated with PAs displaying a vascular cell adhesion protein 1 (VCAM-1) targeting motif. This approach provides a biocompatible method for single-cell coating that does not negatively alter cellular phenotype, binding capacity, or immunosuppressive functionality, with potential utility across a broad spectrum of cell therapies. Statement of significance Cell therapies hold great promise in the treatment of diseases and tissue regeneration, but their clinical use has been limited by cell survival, targeting, and function. We report here a method to coat single cells with a biodegradable matrix of biomimetic nanofibers composed of peptide amphiphile (PA) molecules. The nanofibers were able to coat cells, such as human primary regulatory T cells, with nearly 100 % efficiency, without interrupting the natural cellular phenotype or functions. The approach provides a biocompatible method for single-cell coating that does not negatively alter cellular phenotype, binding capacity, or immunosuppressive functionality, with potential utility across a broad spectrum of cell therapies. (c) 2024 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
更多
查看译文
关键词
Peptide amphiphiles,Regenerative medicine,Supramolecular scaffolds,Artificial extracellular matrices,Single cell coating,Regulatory T cells
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要