Highly Promiscuous Flavonoid Di-O-glycosyltransferases from Carthamus tinctorius L.

Xiaoyu Xu,Meng Xia, Yang Han, Honghu Tan, Yanying Chen, Xinqi Song, Shijun Yuan,Yifeng Zhang,Ping Su,Luqi Huang

MOLECULES(2024)

引用 0|浏览4
暂无评分
摘要
Safflower (Carthamus tinctorius L.) has been recognized for its medicinal value, but there have been limited studies on the glycosyltransferases involved in the biosynthesis of flavonoid glycosides from safflower. In this research, we identified two highly efficient flavonoid O-glycosyltransferases, CtOGT1 and CtOGT2, from safflower performing local BLAST alignment. By constructing a prokaryotic expression vector, we conducted in vitro enzymatic reactions and discovered that these enzymes were capable of catalyzing two-step O-glycosylation using substrates such as kaempferol, quercetin, and eriodictyol. Moreover, they exhibited efficient catalytic activity towards various compounds, including flavones (apigenin, scutellarein), dihydrochalcone (phloretin), isoflavones (genistein, daidzein), flavanones (naringenin, glycyrrhizin), and flavanonols (dihydrokaempferol), leading to the formation of O-glycosides. The broad substrate specificity of these enzymes is noteworthy. This study provides valuable insights into the biosynthetic pathways of flavonoid glycosides in safflower. The discovery of CtOGT1 and CtOGT2 enhances our understanding of the enzymatic processes involved in synthesizing flavonoid glycosides in safflower, contributing to the overall comprehension of secondary metabolite biosynthesis in this plant species.
更多
查看译文
关键词
Carthamus tinctorius L.,flavonoid glycosides,di-O-glycosyltransferases
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要