Boosting Dynamic TDD in Small Cell Networks by the Multiplicative Weight Update Method

CoRR(2024)

引用 0|浏览3
暂无评分
摘要
We leverage the Multiplicative Weight Update (MWU) method to develop a decentralized algorithm that significantly improves the performance of dynamic time division duplexing (D-TDD) in small cell networks. The proposed algorithm adaptively adjusts the time portion allocated to uplink (UL) and downlink (DL) transmissions at every node during each scheduled time slot, aligning the packet transmissions toward the most appropriate link directions according to the feedback of signal-to-interference ratio information. Our simulation results reveal that compared to the (conventional) fixed configuration of UL/DL transmission probabilities in D-TDD, incorporating MWU into D-TDD brings about a two-fold improvement of mean packet throughput in the DL and a three-fold improvement of the same performance metric in the UL, resulting in the D-TDD even outperforming Static-TDD in the UL. It also shows that the proposed scheme maintains a consistent performance gain in the presence of an ascending traffic load, validating its effectiveness in boosting the network performance. This work also demonstrates an approach that accounts for algorithmic considerations at the forefront when solving stochastic problems.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要