Chrome Extension
WeChat Mini Program
Use on ChatGLM

Broad de-regulated U2AF1 splicing is prognostic and augments leukemic transformation via protein arginine methyltransferase activation

bioRxiv the preprint server for biology(2024)

Cited 0|Views15
No score
Abstract
The role of splicing dysregulation in cancer is underscored by splicing factor mutations; however, its impact in the absence of such rare mutations is poorly understood. To reveal complex patient subtypes and putative regulators of pathogenic splicing in Acute Myeloid Leukemia (AML), we developed a new approach called OncoSplice. Among diverse new subtypes, OncoSplice identified a biphasic poor prognosis signature that partially phenocopies U2AF1 -mutant splicing, impacting thousands of genes in over 40% of adult and pediatric AML cases. U2AF1 -like splicing co-opted a healthy circadian splicing program, was stable over time and induced a leukemia stem cell (LSC) program. Pharmacological inhibition of the implicated U2AF1 -like splicing regulator, PRMT5, rescued leukemia mis-splicing and inhibited leukemic cell growth. Genetic deletion of IRAK4, a common target of U2AF1 -like and PRMT5 treated cells, blocked leukemia development in xenograft models and induced differentiation. These analyses reveal a new prognostic alternative-splicing mechanism in malignancy, independent of splicing-factor mutations. Statement of significance Using a new in silico strategy we reveal counteracting determinants of patient survival in Acute Myeloid Leukemia that co-opt well-defined mutation-dependent splicing programs. Broad poor-prognosis splicing and leukemia stem cell survival could be rescued through pharmacological inhibition (PRMT5) or target deletion (IRAK4), opening the door for new precision therapies. Competing Interests Conflict-of-interest disclosure: DTS. serves on the scientific advisory board at Kurome Therapeutics; is a consultant for and/or received funding from Kurome Therapeutics, Captor Therapeutics, Treeline Biosciences, and Tolero Therapeutics; and has equity in Kurome Therapeutics. AV has received research funding from GlaxoSmithKline, BMS, Jannsen, Incyte, MedPacto, Celgene, Novartis, Curis, Prelude and Eli Lilly and Company, has received compensation as a scientific advisor to Novartis, Stelexis Therapeutics, Acceleron Pharma, and Celgene, and has equity ownership in Throws Exception and Stelexis Therapeutics. ### Competing Interest Statement Conflict-of-interest disclosure: DTS. serves on the scientific advisory board at Kurome Therapeutics; is a consultant for and/or received funding from Kurome Therapeutics, Captor Therapeutics, Treeline Biosciences, and Tolero Therapeutics; and has equity in Kurome Therapeutics. AV has received research funding from GlaxoSmithKline, BMS, Jannsen, Incyte, MedPacto, Celgene, Novartis, Curis, Prelude and Eli Lilly and Company, has received compensation as a scientific advisor to Novartis, Stelexis Therapeutics, Acceleron Pharma, and Celgene, and has equity ownership in Throws Exception and Stelexis Therapeutics.
More
Translated text
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined