ARPES investigation of the electronic structure and its evolution in magnetic topological insulator MnBi2+2nTe4+3n family

NATIONAL SCIENCE REVIEW(2024)

引用 0|浏览4
暂无评分
摘要
In the past 5 years, there has been significant research interest in the intrinsic magnetic topological insulator family compounds MnBi2+2nTe4+3n (where n = 0, 1, 2 & mldr;). In particular, exfoliated thin films of MnBi2Te4 have led to numerous experimental breakthroughs, such as the quantum anomalous Hall effect, axion insulator phase and high-Chern number quantum Hall effect without Landau levels. However, despite extensive efforts, the energy gap of the topological surface states due to exchange magnetic coupling, which is a key feature of the characteristic band structure of the system, remains experimentally elusive. The electronic structure measured by using angle-resolved photoemission (ARPES) shows significant deviation from ab initio prediction and scanning tunneling spectroscopy measurements, making it challenging to understand the transport results based on the electronic structure. This paper reviews the measurements of the band structure of MnBi2+2nTe4+3n magnetic topological insulators using ARPES, focusing on the evolution of their electronic structures with temperature, surface and bulk doping and film thickness. The aim of the review is to construct a unified picture of the electronic structure of MnBi2+2nTe4+3n compounds and explore possible control of their topological properties.
更多
查看译文
关键词
magnetic topological insulator,MnBi2Te4,electronic structure,angle-resolved photoemission spectroscopy
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要