Construction of Hollow Ultrasmall Co3O4 Nanoparticles Immobilized in BN for CO2 Conversion

LANGMUIR(2024)

Cited 0|Views2
No score
Abstract
Rational design and fabrication of metal-organic framework-derived metal oxide (MO) materials featuring a hollow structure and active support can significantly enhance their catalytic activity for specific reactions. Herein, a series of Co3O4 nanoparticles (NPs) immobilized in boron nitride (denoted as Co3O4@BN) with highly open and precisely controllable structures were constructed by an in situ self-assembly method combined with a controlled annealing process. The obtained Co3O4@BN not only possesses a hollow structure but also shows highly dispersed Co3O4 NPs and high loadings of up to 34.3 wt %. Owing to the ultrafine particle size and high dispersity, the optimized Co3O4@BN exhibits high catalytic activity for the cycloaddition of CO2 to epoxides under mild conditions (i.e., 100 degrees C and CO2 balloon), resulting in at least 4.5 times higher yields (99%) of styrene carbonate than that of Co3O4 synthesized by the pristine ZIF-67. This strategy sheds light on the rational design of hollow MO materials for various advanced applications.
More
Translated text
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined