Anatomy of localized edge modes in laterally coupled waveguides

arxiv(2024)

引用 0|浏览4
暂无评分
摘要
We present a systematic micromagnetic study of standing spin-wave modes in infinitely long Permalloy strips with rectangular cross-section. Using a finite-element dynamic-matrix method, we first calculate the eigenfrequencies and the corresponding eigenvectors (mode profiles), as a function of the in-plane magnetic field applied across the strip. The ferromagnetic resonance spectra is computed from the mode profiles, assuming a homogeneous radio-frequency excitation, equivalently to an experimental ferromagnetic resonance measurement. The investigation of the field-dependent mode profiles enables for the classification of the observed resonances, here focusing mostly on the true edge mode localized at the vicinity of strip edges. Furthermore, we study the mode localization in pairs of 50-nm-thick Permalloy strips as a function of the strip width and their lateral separation. For closely spaced strips, the spatial profile of the quasi-uniform mode is substantially modified due to a significant hybridization with the edge-localized standing spin-wave modes of the neighbouring strip. We show that a wide-range-tunability of the localized edge-mode resonances can be achieved with a precise control of the magnetostatic coupling between the strips. Extreme sensitivity of the edge mode frequency on the bias field demonstrates a potential of the edge resonances for field sensing. Furthermore, for narrow strips ( 100 nm in width), due to the reduced number of the allowed confined modes, a field-controllable switching between the resonances localized either in the strip center or at the edges of the strips can be achieved.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要