A magnetically powered nanomachine with a DNA clutch

Mouhong Lin,Jung-uk Lee, Youngjoo Kim, Gooreum Kim,Yunmin Jung, Ala Jo,Mansoo Park,Sol Lee, Jungsu David Lah, Jongseong Park,Kunwoo Noh,Jae-Hyun Lee,Minsuk Kwak,Dominik Lungerich,Jinwoo Cheon

Nature Nanotechnology(2024)

Cited 0|Views27
No score
Abstract
Machines found in nature and human-made machines share common components, such as an engine, and an output element, such as a rotor, linked by a clutch. This clutch, as seen in biological structures such as dynein, myosin or bacterial flagellar motors, allows for temporary disengagement of the moving parts from the running engine. However, such sophistication is still challenging to achieve in artificial nanomachines. Here we present a spherical rotary nanomotor with a reversible clutch system based on precise molecular recognition of built-in DNA strands. The clutch couples and decouples the engine from the machine’s rotor in response to encoded inputs such as DNA or RNA. The nanomotor comprises a porous nanocage as a spherical rotor to confine the magnetic engine particle within the nanospace (∼0.004 μm 3 ) of the cage. Thus, the entropically driven irreversible disintegration of the magnetic engine and the spherical rotor during the disengagement process is eliminated, and an exchange of microenvironmental inputs is possible through the nanopores. Our motor is only 200 nm in size and the clutch-mediated force transmission powered by an embedded ferromagnetic nanocrystal is high enough (∼15.5 pN at 50 mT) for the in vitro mechanical activation of Notch and integrin receptors, demonstrating its potential as nano-bio machinery.
More
Translated text
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined