Chrome Extension
WeChat Mini Program
Use on ChatGLM

Exploring the potential for carrying capacity and reusability of 3D printed concrete bridges: Construction, dismantlement, and reconstruction of a box arch bridge

Min Yang, Chao Li, Hao Liu, Longfei Huo,Xiaofei Yao,Bolin Wang, Wenqi Yao,Zedi Zhang, Jianming Ding,Yamei Zhang, Xiaojun Ding

CASE STUDIES IN CONSTRUCTION MATERIALS(2024)

Cited 0|Views7
No score
Abstract
3D concrete printing technology has enabled the construction of full-scale bridges. However, structural carbon emissions due to higher cement content and limitations of embedded reinforcement have limited its widespread adoption. This paper presents a non -reinforced 3D printed concrete box arch bridge and describes its design, construction, dismantlement, and reconstruction, as well as evaluation of the carrying capacity of reconstructed primary arch ring. The bridge adheres to current technical principles and bridge engineering specifications. By taking into account the mechanical anisotropy and primary stress characteristics of the arch, the design negates the need for reinforcement. The study showcases the reusability and potential carbon emission reduction through block printing, on -site assembly, block removal, and secondary usage. The safety of the reconstructed arch bridge was confirmed through an in -situ load test.
More
Translated text
Key words
Concrete 3D printing,Box arch bridge,Reconstruction,Carrying capacity
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined