Bright Blue Emission Lead-Free Halides with Narrow Bandwidth Enabled by Oversaturated Europium Doping

Yizhao Qing, Bing Han,Runnan Yu, Zhiming Zhou,Guangzheng Wu, Changxiao Li, Peijin Ma,Chengyang Zhang,Zhan'ao Tan

JOURNAL OF PHYSICAL CHEMISTRY LETTERS(2024)

引用 0|浏览1
暂无评分
摘要
Eu2+-based lead-free metal halide nanocrystals (LFMH NCs), including CsEuCl3 NCs and CsX:Eu2+ NCs (X = Cl or Br), exhibit highly efficient narrow-band blue photoluminescence, making them competitive candidates for next-generation lighting and displays. However, the growing mechanism of the aforementioned NCs lacks in-depth study, which hinders the development of Eu2+-based nanomaterials. Herein, we demonstrate the colloidal synthesis of CsBr:Eu2+ NCs based on an air-stable europium source. The NCs show deep blue photoluminescence centered at 444 nm, with a maximum photoluminescence quantum yield (PLQY) reaching 53.4% and a fwhm of 30 nm. We further reveal the mechanism that determines CsBr host growth and Eu2+ doping in CsBr:Eu2+ nanocrystals, especially dopant trapping and self-purification, that determine the PLQY level. Pure white, warm white, and cold white LEDs are fabricated based on CsBr:Eu2+ NCs, red and green phosphors, and their performance suits the needs of high-quality lighting.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要